
Journal of Sound and Vibration (1998) 218(2), 307–331
Article No. sv981842

MODAL ANALYSIS OF FLEXIBLE BEAMS WITH
DELAYED RESONATOR VIBRATION

ABSORBER: THEORY AND EXPERIMENTS

N. O  N. J

Mechanical Engineering Department, University of Connecticut, Storrs,
CT 06269-3139 U.S.A.

(Received 19 November 1997, and in final form 6 July 1998)

A recent active vibration absorption method, the Delayed Resonator (DR) is
considered. The DR absorber is implemented on a flexible beam, and the dynamic
features of this structure are studied. An analytical model of the system is
developed in order to predict the experimental findings. Instead of the earlier finite
difference method, modal co-ordinate representation is adopted here. In
particular, the stability features obtained through analytical and experimental
studies are compared. The boundary conditions (BCs), i.e., the beam’s clamping
structure, dictate the restoring forces on the beam–absorber system, and therefore,
play an important role on the system stability. In the experimental work the results
are generated under the present beam BCs. For the analytical study, however, they
have to be carefully formulated. In order to reflect the physical reality some
unconventional BCs are used on the beam. This forms an important part of the
‘‘modelling’’ effort presented here. The results obtained concur with the
experimental findings better than the earlier dynamic models which use the finite
difference method and ideal clamped–clamped BCs. In summary, modal
representation with the unconventional BCs are suggested as an analytical tool for
the design of DR absorbers operating on beams.
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1. INTRODUCTION

A recent active vibration absorption strategy, the Delayed Resonator (DR), is
considered when operated on a flexible beam [1, 2]. The primary objective of this
report is to present an analytical design tool to assess the stability properties of
the controlled system.

The DR vibration absorber has some attractive features in eliminating tonal
vibrations from the objects to which it is attached [2–4]. Some of them are:
real-time tunability, the stand-alone nature of the actively controlled absorber, and
the simplicity of the application. Additionally, this single-degree-of-freedom
(SDOF) absorber can also be tuned to handle multiple frequencies of vibration
[4].
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It is particularly important that the combined system, i.e., the primary structure
and the absorber together, is asymptotically stable when the DR is implemented
on a flexible beam. The experimental efforts conducted to date offer encouraging
results. Earlier analytical studies on this setting show reasonable correspondence
to the experiments for most of the tonal frequency ranges. However, they fall short
of supporting the experiments for the multiple frequency vibration suppression
cases. This study expands the analytical effort, leading to a new tool of assessing
the performance of DR absorption methods which yield a better match with the
experiments.

The earlier modelling investigations were based on the Finite Difference Method
(FDM) representation of the flexible body [5]. This approach had limited success
in extracting higher order properties of vibration suppression with DR. The
analytical effort disagreed with the experimentally stable operation of the
‘‘Dual-Frequency Fixed Delayed Resonator’’ (DFFDR) [4, 6]. This short-fall
originated from not only discritization errors incurring in the FDM representation
of the flexible dynamics but also unrealistically simplified selection of the boundary
conditions (BCs). In this work we remove both elements utilizing the
Ritz–Galerkin representation of the beam and absorber dynamics, and some
unconventional BCs.

Modal representation of flexible beams is adopted from the common literature
[7–10]. Two critical modelling decisions are treated first: (a) the number of modes
to be included in the model, and (b) appropriate form of the BCs for the mode
shapes (i.e., the eigenfunction determinations). The discrete component
attachments, the DR absorber and the exciter are included. The stability of this
combined system is then studied and the results are compared with the
experimental findings.

The main structure is taken as a clamped–clamped Euler–Bernoulli beam. As
known from practice, the actual BCs do not comply with the ideal zero slope and
zero deflection at the end points. In reality some compliance in lateral and bending
directions is always present. Therefore, the boundary conditions in the analytical
model are formed appropriately to better represent reality.

The paper contains the following. The delayed resonator is briefly reviewed in
section 2 with inclusion of acceleration feedback. The double frequency
suppression ability of the DR, dual frequency fixed delayed resonator, is also
summarized. Section 3 addresses the governing equations of motion for DR on
a flexible beam. The issue of stability is also addressed in this section. Effect of
the BCs on the beam dynamics, as the primary structure, is analyzed in section
4. Experimental set-up and numerical results are compared in sections 5 and 6.
Section 7 concludes the study and points out future research.

2. DELAYED RESONATOR (DR), AN OVERVIEW

The DR vibration absorption technique was recently introduced by references
[1, 2]. In order to assist the reader, we present a brief summary of the method. DR
has an unconventional control logic which is implemented on a passive absorber
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(Figure 1(a)). It consists of a proportional position feedback with time delay. The
position feedback can be based on absolute or relative (with respect to the
primary) displacements of the absorber [11]. These displacement measurements are
prohibitively difficult for high frequency–low amplitude applications. For such
cases acceleration feedback is much more feasible. Naturally, the effects of
substituting displacement measurements with acceleration should be carefully
analyzed.

2.1. DR   

Consider the reconfigured dynamics of a dissipative mass–spring–damper trio
including a proportional delayed acceleration feedback, Figure 1(b). The objective
of this feedback control is to convert the dissipative dynamics shown in Figure
1(a) into a conservative (or marginally stable) one with a designated resonance
frequency vc . In other words, the control aims the placement of dominant poles
at 2jvc for the final system, where j=z−1. This pole placement can also be
achieved using many other types of full-state feedback routines (such as PD). The
DR offers simplicity over these techniques due to its form: partial state
feedback with delay. This simplicity in implementation, however, yields some
complications in stability study, particularly because of the delay introduced in the
feedback.

The proposed feedback force to achieve the pole placement is

gẍa (t− t) (1)

Figure 1. (a) Passive absorber, (b) delayed resonator with acceleration feedback.
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Figure 2. A typical root locus plot for the Delayed Resonator with acceleration feedback, when
t is fixed: ×, open loop poles; W, points of operation; w, open loop zeros; Y, increasing gain.

and the corresponding new system dynamics is

maẍa (t)+ caẋa (t)+ kaxa (t)− gẍa (t− t)=0. (2)

The Laplace domain representation leads to the transcendental characteristic
equation

mas2 + cas+ ka − gs2 e−ts =0. (3)

This equation possesses infinitely many finite roots for g$ 0 and t$ 0. Their
distribution can be sketched following the root locus analysis [5].

To achieve ideal resonator behavior, two dominant roots of equation (3) should
be placed on the imaginary axis at the desired crossing frequency vc while the
others remain in the left-half of the complex plane. Substituting s=2jvc into
equation (3) and solving for the control parameters gc and tc one obtains

gc =
1
v2

c
z(cavc )2 + (mav

2
c − ka )2, (4)

tc =
1
vc 6tan−1 $ cavc

mav
2
c − ka%+2(l−1)p7, l=1, 2, . . . . (5)

The variable parameter l refers to the branch of root loci that happens to cross
the imaginary axis at vc (Figure 2). Clearly, it does not have to be the first branch.
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The practical importance of parameter l is visualized in the plots of gc (vc )
versus tc (vc ) and vc versus tc for varying l values (Figure 3). It is easy to observe
that for l=1 (i.e., the first branch of root loci crossing the imaginary axis at the
desired frequency), the delayed resonance feature can be attained over a
semi-infinite frequency range from vA1 to a. The lower bound vA1 corresponds
to the stability limit of the DR on the first branch. For these gc and tc the second
branch crosses to the unstable right half of the complex plane at jvA2 concurrently
with the first branch. In this situation, there are two pairs of roots on the imaginary
axis, which impart dual resonance in the absorber; it is treated in the next section.
If gc and tc are selected to induce vc QvA1, such as the operating point A1 in Figure
3, this would result in an unstable root on the second branch, because for the
corresponding delay tA, the branch no. 2 crosses to the unstable half plane at a
smaller gain gA2 Q gA1. Therefore, considering the stability of the DR alone,
vmin =vA1 should be strictly observed.

For lq 1, following similar reasoning, the range of operating frequencies
is limited by both upper and lower bounds due to previous and next
branch crossings, respectively. For the common frequency interval of different
branches, for instance vB2 Qvc QvA2 for l=1 and 2, both branches can be
used for stable DR operation. The tC2 = tC1 +2p/vC relation holds between the
two feedback delays. However, the gains for both branches remain the same,
points D, E, D' and E' in Figure 3. This freedom in selecting the parameter l
can be considered as a useful tool in the design process of a DR vibration
absorber.

Figure 3. Ranges of operation for Delayed Resonator with acceleration feedback: (a) gc , (b) vc .
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Figure 4. Beam–absorber–exciter system configuration.

2.2.      ()

As explained above, at the stability limits of DR there are two pairs of
characteristic roots on the imaginary axis for the same values of gc and tc . Thus,
the single-mass DR exhibits two natural frequencies of oscillation simultaneously.
This structure is called Dual Frequency Fixed Delayed Resonator (DFFDR). It acts
like two fixed frequency DRs combined in one. Therefore, it is capable of
suppressing oscillations emanating from a bitonal (dual frequency) excitation. The
details of DFFDR are given in reference [4] for position feedback. This section
presents the highlights of a similar DFFDR analysis for acceleration feedback.

In summary, a given absorber (i.e., ma , ka , ca ) can be forced into dual resonance
by a single delayed acceleration feedback gcẍa (t− tc ) provided that all the
remaining poles are in the stable left half plane. There exist always some pairs of
g*c and t*c to achieve this, each pair yields different dual resonance frequencies such
as vA1 and vA2, vB2 and vB3, etc.; Figure 3. As a point of interest, it is also proved
that there is no possibility of creating triple resonance behavior utilizing a similar
single delayed feedback, on a single mass absorber [4].

3. DR APPLICATION ON FLEXIBLE BEAMS SYSTEM

Undesirable vibrations of flexible structures have been effectively reduced using
a variety of dynamic vibration absorbers. The DR method offers a wide band of
absorption frequencies, as well as real-time tunability as two major advantages.

A point to note is that the control logic does not require any information from
the primary structure and it is decoupled from the primary system. It is clear,
however, that the time delay is a destabilizing factor for the combined system.
Forcing a stable mass–spring–damper into a marginally stable resonator brings a
complex problem of stability of the combined system into the analysis. This will
be addressed in the following sub-sections.
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3.1.       

We consider a general beam as the primary system with DR attached to it and
subjected to a harmonic force excitation, as shown in Figure 4. The point
excitation is located at b, and the absorber is placed at a. A uniform cross-section
is considered for the beam and Euler–Bernoulli assumptions are made. The beam
parameters are all assumed to be constant and uniform. To characterize the elastic
deformation from the undeformed natural axis of the beam, we use y(x, t). In the
derivations that follow, the dot ‘‘ � ’’ and prime ‘‘'’’ indicate a partial derivative with
respect to the time variable t and position variable x, respectively.

Under these assumptions, the kinetic energy of the system can be written as

T= 1
2r g

L

0 01y
1t1

2

dx+ 1
2maq̇2

a + 1
2meq̇2

e . (6)

The potential energy of this system using linear strain is given by

U= 1
2EI g

L

0 01
2y

1x21
2

dx+ 1
2ka{y(a, t)− qa}2 + 1

2ke{y(b, t)− qe}2. (7)

The equations of motion may now be derived by applying Hamilton’s principle.
However, to facilitate stability analysis we resort to an assumed-mode expansion
and Lagrange’s equations. Specifically, y is written as a finite sum, the so-called
Galerkin approximation:

y(x, t)= s
n

i=1

Fi (x)qbi (t). (8)

The orthogonality conditions between these mode shapes can also be derived as
[12]

g
L

0

rFi (x)Fj (x) dx=Nidij , g
L

0

EIF0i (x)F0j (x) dx=Sidij , (9)

where i, j=1, 2, . . . , n, dij is the Kronecker delta, and Ni and Si are defined by
setting i= j in equation (9). Using the orthogonality conditions, it is possible to
rewrite the kinetic and potential energies, i.e., equations (6) and (7), in the more
suitable form

T=
1
2

s
n

i=1

Niq̇2
bi + 1

2maq̇2
a + 1

2meq̇2
e ,

U=
1
2

s
n

i=1

Siq2
bi + 1

2ka{y(a, t)− qa}2 + 1
2ke{y(b, t)− qe}2, (10)
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where Ni and Si are respective generalized mass and stiffness for the ith mode, as
defined above. Also,

Si =Niv
2
i . (11)

The acceleration feedback of DR, actuator excitation force, and damping
dissipating forces in both DR and exciter are considered as non-conservative forces
in Lagrange’s formulation. Consequently, the equations of motion are derived.
The absorber dynamics is governed by

maq̈a (t)+ ca6q̇a (t)− s
n

i=1

Fi (a)q̇bt (t)7
+ ka6qa (t)− s

n

i=1

Fi (a)qbi (t)7− gq̈a (t− t)=0, (12)

the exciter by

meq̈e (t)+ ce6q̇e (t)− s
n

i=1

Fi (b)q̇bi (t)7+ ke6qe (t)− s
n

i=1

Fi (b)qbi (t)7=−f(t), (13)

and finally the beam:

Niq̈bi (t)+Siqbi (t)+ ca6s
n

i=1

Fi (a)q̇bi (t)− q̇a (t)7Fi (a)+ ce6s
n

i=1

Fi (b)q̇bi (t)

− q̇e (t)7Fi (b)+ ka6s
n

i=1

Fi (a)qbi (t)− qa (t)7Fi (a)+ ke6s
n

i=1

Fi (b)qbi (t)

− qe (t)7Fi (b)+ gFi (a)q̈a (t− t)= f(t)Fi (b), i=1, 2, . . . , n. (14)

Equations (12), (13) and (14) form a system of n+2 second order coupled
differential equations.

By proper selection of the feedback gain g= gc and delay t= tc , as in equations
(4) and (5), the DR can be tuned to the desired resonant frequency vc . This
selection satisfies the transcendental characteristic equation (3) for s=2jvc . This
condition, in turn, forces the beam to be motionless at a, when the beam is excited
by a tonal force at frequency vc . This conclusion is arrived at by taking the
Laplace transform of equation (12) and using equation (3). In short,

Y(a, s)= s
n

i=1

Fi (a)Qbi (s)=0, (15)
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where Y(a, s)=L{y(a, t)} and Qbi (s)=L{qbi (t)}. Equation (15) can be rewritten
in the time domain as

y(a, t)= s
n

i=1

Fi (a)qbi (t)=0, (16)

which indicates that the steady state vibration of the point of attachment of the
absorber is eliminated. The absorber mimics a resonator at the frequency of
excitation, and absorbs all the vibratory energy at the point of attachment.

3.2.     

In the preceding section, we have derived the equations of motion for the
beam–exciter–absorber system, in its most general form. As stated before,
inclusion of the delay element in the system is, indeed, an invitation to instability.
This topic is treated next.

The equations of motion, i.e., equations (12), (13) and (14), can be rewritten in
the Laplace domain. For the absorber:

(mas2 + cas+ ka − gs2 e−ts)Qa (s)− (cas+ ka )$s
n

i=1

Fi (a)Qbi (s)%=0; (17)

for the exciter:

(mes2 + ces+ ke )Qe (s)− (ces+ ke )$s
n

i=1

Fi (b)Qbi (s)%=−F(s); (18)

and for the beam (using equations (17) and (18)):

(Nis2 +Si )Qbi (s)+maFi (a)s2Qa (s)+meFi (b)s2Qe (s)=0, i=1, 2, . . . , n.

(19)

At this stage structural and viscous damping terms are introduced by replacing
Si with complex stiffness Si (1+ jd) and appending a cs term, respectively. That
is, the new Si becomes

Si (1+ jd)+ cs, (20)

where Si is defined in equation (9).
Hence, the Laplace domain representation of the combined system takes the

form

A(s)Q(s)=F(s), (21)
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In order to assess the combined system stability, the roots of the characteristic
equation, det (A(s))=0 are analyzed. The presence of transcendental delay term
in the characteristic equations complicates this effort. The root locus plot
observation mentioned in section 2 as depicted in Figure 2 for DR alone can now
be applied to the entire system. This process constitutes the primary objective of
the work presented here.

It is typical that increasing feedback gain, gc , causes instability as the roots move
from left to right in the complex plane. Consequently, for a given delay t, the gain
corresponding to the DR operation should be smaller than the gain for which the
global system becomes marginally stable using the same delay, t. The ratio of these
two gains gcs (t)/gc (t) can be defined as the stability margin of the control system,
at that delay value t. The comparison of gcs (vc ) versus tcs (vc ) plot of the combined
system with the gc (vc ) versus tc (vc ) plot of the DR reveals this gain margin for
the entire frequency spectrum. This picture also yields the frequency range for
stable operation of the combined system. That is, for a given tc the system is stable
if gc Q gcs or the stability margin is greater than one. An example of such treatment
is presented in the numerical section below.

4. EFFECT OF BEAM BOUNDARY CONDITIONS

We present an essential analysis, next, on the determination of the
eigenfunctions, or mode shapes Fi (x), as a review. When all external forces are
zero, the classical Euler–Bernoulli equation represents the beam dynamics.

r
12y
1t2 +EI

14y
1x4 =0. (23)

Substituting the Galerkin approximation of equation (8) into the equation (23)
forms an expression for the eigenfunction Fi (x) as

Fi (x)= a1 sin kix+ a2 cos kix+ a3 sinh kix+ a4 cosh kix, i=1, 2, . . . , n,

(24)

where ki is the modified spatial frequency which is defined as

k2
i =viX r

EI
, i=1, 2, . . . , n. (25)

It is convenient to write these eigenfunctions in the following form to implement
the homogenous BCs:

Fi (x)=C1(cos kix+cosh kix)+C2(cos kix−cosh kix)

+C3(sin kix+sinh kix)+C4(sin kix−sinh kix). (26)
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4.1. –  

Next, two sets of BCs are considered. The first set is for the conventional
clamped–clamped case as was treated in the earlier FDM study [5], for which the
BCs are

F=0
F'=0 bx=0

,
F=0
F'=0 bx=L

. (27)

Using these BCs in the eigenfunctions of equation (26), one obtains

Fi (x)=Hi [cos kix−cosh kix+Ri (sin kix−sinh kix)]. (28)

Hi is determined by normalizing the amplitude of vibration in each mode, and Ri

is given by [13]

Ri =−
cos (kiL)− cosh (kiL)
sin (kiL)− sinh (kiL)

=
sin (kiL)+ sinh (kiL)
cos (kiL)− cosh (kiL)

, (29)

where

ki 1
(2i+1)p

2L
, i=1, 2, . . . , n. (30)

Notice that two of the integration constants in equation (26) conveniently become
zero.

4.2.  –  

As indicated in reference [5] the stability charts which are obtained analytically
(using the FDM representation) with clamped–clamped BCs were not in full
agreement with those generated experimentally. One of the major reasons for this
is, indeed, inevitable imperfections in clamping of the beam at the end points which
were not taken into account in the modelling. This is resolved next by considering
a beam with general elastic BCs.

In order to analyze the problem, a uniform beam is considered, as depicted in
Figure 5. kTR and kuR , kTL and kuL are the transverse stiffness, and the torsional
stiffness constants, at the left and right end of the beam, respectively. When these
spring constants are selected as combinations of infinity or zero, a variety of ideal
BCs result. For symbolic simplification, we define the following non-dimensional
spring constants:

b1 =
kuLL
EI

, b2 =
kTLL3

EI
, b3 =

kuRL
EI

, b4 =
kTRL3

EI
. (31)

The associated general BC expressions for the governing differential equation of
the system (23) are in the form of [14]

at x=0,
F0(x)−

b1

L
F'(x)=0,

F1(x)+
b2

L3 F(x)=0,
and at x=L,

F0(x)+
b3

L
F'(x)=0,

F1(x)−
b4

L3 F(x)=0.
g
G

G

F

f
g
G

G

F

f
(32)
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where kL is the non-dimensional natural frequency and

C=cos (kL), S=sin (kL), Ch=cosh (kL), Sh=sinh (kL). (34)

The determinant of the coefficient matrix is set to zero to obtain the characteristic
equation, from which the non-dimensional natural frequencies, kL, can be
determined. Consequently, the eigenfunctions necessary for the Galerkin
representation of equation (8) can readily be formed.

However, the characteristic equation in this general form is very complicated
to solve. One can rewrite this equation as

ãb1b2b3b4 + b	 b1b3(b2 + b4)+ c̃b2b4(b1 + b3)+ d	 (b1b2 + b3b4)

+ẽ(b1b4 + b2b3)+ f	 b1b3 + g̃b2b4 + h	 (b1 + b3)+ k	 (b2 + b4)+ l	 =0, (35)

where coefficients ã, b	 , c̃, . . . are trigonometric functions of the non-dimensional
frequency kL. They are given in Appendix A for the interested reader.

Equation (35) represents a general form of the characteristic equation for a
uniform Euler–Bernoulli beam. As stated earlier, setting the stiffness constants b1,
b2, b3 and b4 to zero or infinity, all combinations of the ideal BCs can be obtained.
For instance, for a clamped–clamped beam all bi are infinity and equation (35) is
reduced to

ã=1−CCh=0. (36)

In another example for the clamped–free beam, b1 and b2 are infinity and b3 and
b4 are zero. This yields

d	 =(kL)4(1+CCh)=0c 1+CCh=0. (37)

These two characteristic equations are in full agreement with the common
literature, for the conventional BCs [12].

Figure 5. Beam with elastic boundary conditions.
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Figure 6. Experimental structure, steel E=210 GPa.

Using equation (33) in equation (26), one can obtain the eigenfunction Fi (x) in
the form

Fi (x)=Hi6cos kix−cosh kix−
kiL
b1

(sin kix+sinh kix)

+Ri$sin kix−sinh kix+
(kiL)3

b2
(cos kix+cosh kix)%7, (38)

where Hi is determined by normalizing the amplitude of vibration, as in an ideal
clamped–clamped case, and Ri is given by

Ri =
C+Ch+(b3/kiL)(S+Sh)+ (kiL/b1)[−S+Sh+(b3/kiL)(C+Ch)]

−S−Sh+(b3/kiL)(C−Ch)+ ((kiL)3/b2)[−C+Ch−(b3/kiL)(S−Sh)]
.

(39)

Setting all bi to infinity, one can reduce this equation to the one given by equation
(29).

4.3.      

As discussed earlier, elastic BCs are introduced in order to better represent the
beam dynamics, including the imperfection of clamping at the end points. On the
other hand, finding the translational and torsional equivalent spring constants (b1,
b2, b3 and b4) at the end points is a cumbersome practical procedure and sometimes
impossible. However, by imposing the experimentally measured natural
frequencies of the beam into the characteristic equation (35), one can obtain the
parameters bi . This inverse analysis, which uses the measured frequencies to
determine the BCs instead of the other way around, is a realistic way of arriving
at beam eigenfunctions for the non-ideal clamped–clamped ends. This
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combination of experimental results and theoretical findings is described next and
implemented in section 6.

Imposing the first four natural frequencies, the characteristic equation (35)
yields a set of simultaneous non-linear algebraic equations in terms of unknowns
bi . For instance, taking into account four modes (four natural frequencies) of the
beam, will result in a system of four simultaneous non-linear equations for bi .
Mathematically, the problem can be stated as

fi (b1, b2, b3, b4)=0, i=1, . . . , 4. (40)

The existence and uniqueness of the positive solutions for such a set of non-linear
simultaneous equations is almost impossible to prove. Available commercial
software, however, can be utilized for a local or global search.

5. EXPERIMENTAL SETTING AND RESULTS

The experimental set-up used to verify the findings is shown in Figure 6. It is
the same as that of reference [5]. A brief description is given here for convenience
to the reader. The primary structure is a 3/80×10×120 steel beam (2) clamped
at both ends to a granite bed (1). A piezoelectric actuator with a reaction mass
(3 and 4) is used to generate the periodic disturbance on the beam. A similar
actuator–mass set-up constitutes the DR absorber (5 and 6). They are located
symmetrically at one quarter of the length along the beam from the center. The
feedback signal used to implement the DR is obtained from the accelerometer (7)
mounted on the reaction mass of the absorber structure. The other accelerometer
(8) attached to the beam is only to monitor the vibrations of the beam and to
evaluate the performance of the DR absorber in suppressing them. The details of
this description is left to the article referenced above. The numerical values for this
beam–absorber–exciter set-up are given in Appendix B.

The control is applied via a DSP using a sampling rate of 50 kHz in all the
experiments presented. The DSP runs the DR routine in a single input–single
output mode as a free standing CPU as long as g(v) and t(v) values are
unchanged, i.e., v is fixed. When changed, the variation of v is measured via the
DR acceleration feedback signal. This frequency is utilized to find the gain and
delay using equations (4) and (5). It is important to note again that the control
loop is closed within the DR structure itself, without external information from
the primary. That is, the DR absorber can operate as a free standing element to
be attached at a point where the vibration needs to be suppressed.

6. DYNAMIC SIMULATION AND COMPARISON WITH EXPERIMENTS

As indicated earlier, the research group of the authors has studied the beam
dynamics using the finite difference method (FDM) [5]. This model produced a
system stability picture which is not in full concurrence with the experimental
counterparts. One particular point of interest appeared when the DR is operating
in a dual frequency mode (i.e., the Dual Frequency Fixed Delayed Resonator,
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DFFDR). In this mode the DR is tuned to resonate not only at one frequency
but two, concurrently. Consequently, the controlled structure, DFFDR, would
become an ideal vibration absorber at these two frequencies. The experiments
showed a stable combined system and led to expected vibration absorption at both
frequencies, while the FDM of the dynamics indicated an unstable operation.

Another difficulty in the earlier FDM study was associated with the
determination of the modulus of elasticity, E. These models used ideal
clamped–clamped BCs. Consequently a very low E constant was calculated using
the first natural mode of the beam and its frequency. Because the
clamped–clamped boundary conditions are stiffer than designed, the first natural
frequency obtained from experiments were matched only by weakening the beam
itself, i.e., lowering E.

In this study the beam dynamics is modelled using the modal analysis technique
and the catalogue value of E. The beam is considered to have compliant supports,
which exhibit both transverse and bending stiffnesses. The unknown stiffnesses are
evaluated using the experimentally determined natural frequencies, as explained
above, and the eigenfunctions are found using equation (38).

Without loss of generality, we consider the symmetric boundary conditions here
for simplicity. That is,

kuL = kuR c b1 = b3, kTL = kTR c b2 = b4. (41)

Equation (35) should support the experimentally found natural frequencies (i.e.,
the eigenvalues). Inserting this condition one obtains

f1(b1, b2, v1)=0, f2(b1, b2, v2)=0, (42)

which are two simultaneous non-linear equations for the unknowns b1 and b2.
There may be many solutions for {b1, b2}. Those which yield b1 q 0, b2 q 0 are
the acceptable solutions. For the experimental set-up at hand, the natural
frequencies are measured for the first two natural modes, v1 and v2. These
frequencies are obtained much more precisely than those of higher order natural
modes. Table 1 offers a comparison between the experimental (real) and analytical
(ideal) clamped–clamped beam natural frequencies. The discrepancies arrive from
two sources: the experimental frequencies are structurally damped natural
frequencies and they reflect the effect of partially clamped BCs. The theoretical
frequencies, on the other hand, are evaluated for an undamped clamped–clamped
beam, i.e., d=0 and c=0 of equation (20).

T 1

Comparison between experimental and theoretical beam natural
frequencies (Hz)

Peak frequencies Natural frequencies
Natural modes (experimental) (clamped–clamped)

First mode 466·4 545·5
Second mode 1269·2 1506·3
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Figure 7. Analytically obtained stability chart: ——, Delayed Resonator; – – –, combined system.

Using the experimental data, and utilizing the Maple symbolic manipulation
package for equation (42),

b1 = b3 =22·3565, b2 = b4 =4530·1978 (43)

Figure 8. Experimentally obtained stability chart: ——, Delayed Resonator; – – –, combined
system.



4

–3

–2

–1

0

1

2

3

–4
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.160.00 0.18

Time (s)

A
cc

el
er

a
ti

o
n

 /
 g

Control on

Absorber

Beam

  325

Figure 9. Beam and absorber response to 1270 Hz disturbance, analytical.

are obtained as the realistic stiffnesses. With these values all the modal shapes (i.e.,
the eigenfunctions), given by equation (42), can be formed. A number of
demonstrative exercises arise from this point.

After observing the effect of the number of modes used on the beam
deformation, a minimum of three natural modes are taken into account. The first
two modes alone do not reveal sufficient detail of the beam deformation for our
purposes. This critical selection is made considering the stability of the system. The
evolution of the stability curves for the combined system is studied as the number
of modes taken in the model increases starting from 3. Figure 7 shows the stability
curve resulting from a 3-mode representation. The DR operating points are also
shown on this figure with thin lines. Notice that the DFFDR operation remains
in the stable side of the curve for the combined system. When the same analysis
is performed utilizing the 4-mode representation of the system with the same
boundary conditions, no discernible difference in the stability chart is observed.
Therefore, for the rest of the study only a 3-mode representation is used.

Next, the same stability tableau from the experiments is presented, Figure 8. The
tests which yield this figure are conducted as follows.

For the DR part: the absorber is installed on a vibration isolation table; a fixed
delay, t, is selected; feedback gain, g, is implemented; a pulse excitation force is
applied; the time response is observed; g is increased until the system shows
‘‘resonant’’ behavior, say at gc ; the point (t, gc ) is marked as a ‘‘DR operating
point’’; t is increased and the above process repeated to cover the region of
interest.

For the combined system: (1) the test set-up, as shown in Figure 6, is on a
vibration isolation table; (2) t is selected and implemented, exciter is uncontrolled
(i.e., acting as a passive structure); (3) a small gain, g, is applied in DR feedback;
(4) the accelerations q̈a , q̈ (anywhere on the beam) are monitored; (5) g is increased
until the combined structure shows marginal stability (i.e., the whole system
becomes resonant), say at gcs ; (6) the point (t, gcs ) is marked as the stability limit
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for the combined system; (7) t is increased and the above process repeated (from
step (1) on) until the entire region of interest (tmin Q tQ tmax ) is covered.

Notice that the point marked as DFFDR is found at the intersection of the first
and second branch operations of DR. A very interesting point is that the DR
subassembly itself can be unstable (to the left of DFFDR on the third branch such
as point C) while the combined system is asymptotically stable.

A good correspondence between Figures 7 and 8 is noticeable. One particular
point of interest for us is the fact that the dual frequency fixed delayed resonator
(DFFDR) point remains in the stable side (point DFFDR on Figures 7 and 8)
of both the analytically and experimentally obtained stability curves. This
agreement is one of the critical contributions of this work. It indicates that if the
BCs for the primary system were properly selected, the analytical study could
reveal the stable operating zones of DR absorption. The method, therefore,
constitutes a valuable design tool.

The simulated time response versus the experimental results of vibration
suppression are now compared. Figure 9 shows a test with the excitation frequency
vc =1270 Hz, which corresponds to point ‘‘test 1’’ in Figure 7. The corresponding
theoretical control parameters are: gc theory =0·0252 kg and tc theory =0·8269 ms. The
experimental control parameters for this frequency are found to be
gc exp. = 0·0273 kg and tc exp. = 0·82 ms (see Figure 8, point ‘‘test 1’’). The exciter
disturbs the beam for 5 ms, then the DR tuning is triggered. The acceleration of
the beam at the point of attachment decays exponentially. For all intents and
purposes the suppression takes effect in approximately 200 ms. This result matches
very closely with the experimental data; Figure 10. The only noticeable difference
is in the frequency content of the exponential decay. This property is dictated by
the dominant poles of the combined system. It seems that these poles have the
same real parts comparing Figures 9 and 10. The imaginary part, however, is
smaller in the experimental study. This difference is a small nuance which does not
affect the earlier observations.

Figure 10. Beam and absorber response to 1270 Hz disturbance, experimental.
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Figure 11. Beam and absorber response to dual frequency disturbance, analytical.

Next, the simulation of DFFDR operation is compared with the experimental
results. The operating point is depicted as ‘‘test 2’’ in Figure 7 and the
corresponding dual frequency values of the intersection of the second and third
Root Locus branches are v1theory =1037·20 Hz and v2theory =1422·15 Hz for
gc theory =0·0561 kg and tc theory =1·4201 ms. Corresponding experimental values,
respectively, are: v1exp. = 1025 Hz and v2exp. = 1404 Hz for gc exp. = 0·0623 kg and
tc exp =1·424 ms. The slight difference between the theoretical and experimental
values are attributed to the parameter uncertainties and non-linearities of the
piezoelectric actuator. Figure 11 shows the beam acceleration at the point of
attachment and the DR absorber acceleration, where the exciter is disturbing the
beam with a forcing

P1 sin (v1t)+P2 sin (v2t). (44)

Figure 12. Beam and absorber response to dual frequency disturbance, experimental.
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Figure 13. Waterfall depiction of the beam acceleration to 1270 Hz disturbance.

Figure 14. Waterfall depiction of the beam acceleration to dual frequency (1037 and 1422 Hz)
disturbance.
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Notice the dual frequency trace of the DR once the tuning takes effect at 5 ms,
indicating that it is sensitized to resonate at these two frequencies. The suppression
appears much faster than it does in Figure 9, because the DFFDR point has a
large stability margin (see Figure 7). Figure 12 shows the experimental response
of the beam and the absorber to the dual frequency (v1exp and v2exp ) excitation.
The agreement between theoretical and experimental findings is obvious, for this
operating condition as well.

Finally, the time trace of each point along the beam is presented using a
waterfall depiction; Figure 13 (only beam acceleration is shown). It is clear that
the point of attachment gets quieted. Notice that there are some small transverse
oscillations and bending slopes at the end points, as expected. A similar picture
is presented in Figure 14 for DFFDR operation corresponding to point ‘‘test 2’’
of Figure 7. The bi-tonal signature of the beam acceleration is evident, as well as
the fast exponential decay at the point of absorber attachment. Note again that
the stability margin is quite high at this point of operation (Figure 7).

7. CONCLUSIONS

A modal analysis representation of a flexible beam is presented. The study is
conducted to create an analytical tool for the design of a new tunable vibration
absorber, the Delayed Resonator. The details of advantages of the DR absorption
method are given in other publications. In this work the correspondence of
experimental and analytical findings, especially those which are related to the
stability aspects of the combined structure, are treated. An infinite-degree-of-free-
dom system with a point absorber and a point exciter are taken into account. Both
experimental and analytical results are presented. In particular the stable operation
of DFFDR (dual frequency) absorption is shown matching the experimental
findings. This is a feature which could not be brought to an agreement in the earlier
analytical–experimental comparisons. The adoption of the realistic boundary
conditions in this study offered a significant improvement as opposed to the ideal
clamped–clamped BCs. This approach is, therefore, recommended as a tool for the
design of a DR vibration absorber.
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APPENDIX A: COEFFICIENTS OF THE COMBINED SYSTEM
CHARACTERISTIC EQUATION

The coefficients of the characteristic equation (35) are all functions of
non-dimensional natural frequency kiL, which are defined below.

ã=1−CCh, b	 =(kL)3(SCh+CSh),

c̃= kL(SCh−CSh), d	 =(kL)4(1+CCh),

ẽ=2(kL)4CCh, f	 =−2(kL)6SSh,

g̃=2(kL)2SSh, h	 =−(kL)7(SCh+CSh),

k	 =(kL)5(CSh−SCh), l	 =(kL)8(1−CCh).

APPENDIX B: THE NUMERICAL VALUES FOR THE
BEAM–ABSORBER–EXCITER SET-UP

Beam: E=210 Gpa, r=1·8895 kg/m.
Absorber: ma =0·183 kg, ka =10130 kN/m, ca =62·25 N s/m, a=L/4.
Exciter: me =0·173 kg, ke =6426 kN/m, ce =3·2 N s/m, b=3L/4.

APPENDIX C: NOMENCLATURE

A cross-sectional area of the beam (m2)
a location of the DR (m)
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b location of the exciter (m)
c beam damping coefficient (N s/m)
ca absorber damping coefficient (N s/m)
ce exciter damping coefficient (N s/m)
E beam modulus of elasticity (Pa)
F force vector {N}
g feedback gain (kg)
gc crossing gain for DR (kg)
gcs crossing gain for combined system (kg)
I beam cross-sectional of moment of inertia (kg m2)
ka absorber spring stiffness (N/m)
ke exciter spring stiffness (N/m)
L beam length (m)
m beam mass (kg)
ma absorber mass (kg)
me exciter mass (kg)
Ni generalized beam mass for ith mode (kg)
P amplitude of constant harmonic force excitation (N)
qa absorber displacement (m)
qe exciter displacement (m)
qbi time dependent generalized co-ordinate for the ith mode of beam (m)
Si generalized stiffness of the beam (N/m)
t time (s)
T total kinetic energy (N m)
U total potential energy (N m)
x distance of the beam element from the support (m)
y(x, t) transverse deflection of the beam (m)
Fi (x) mode shape for the ith mode of vibration (-)
vcs combined system crossing frequency (Hz)
vc DR crossing frequency (Hz)
vna absorber natural frequency (Hz)
vi ith natural frequency of the beam (Hz)
r beam linear mass density (kg/m)
t feedback delay (s)
tc crossing delay for DR (s)
tcs crossing delay for combined system (s)


